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ON THE CHOICE OF PARAMETER IN A METHOD 
FOR THE INVERSION OF FOURIER SERIES 

M. DI NATALE, L. GOTUSSO, R. PAVANI, AND D. ROUX 

ABSTRACT. The a priori evaluation of the pointwise approximation, by a regu- 
larization method suggested earlier, of a L1 periodic function f, when only 
noisy Fourier coefficients of f are known, is given here in a formulation more 
suitable for numerical verification. A careful evaluation of the constants in- 
volved in the formulas is also provided. Finally, a procedure is described of a 
statistical check performed in order to verify whether the theoretically suggested 
value of the regularization parameter is a good choice with respect to functions 
generally arising in applications. 

1. INTRODUCTION 

We consider the (generally) ill-posed problem of "reconstructing" a function 
f, integrable on the N-dimensional torus, when we only know the sequence of 
its Fourier coefficients. A recent paper [2] (see also [ 1 ]) describes a regularization 
method to solve this problem which is stable also in the case of noisy data. 
Extensive numerical experience shows that the method is very efficient [4] (see 
also [5]). The efficiency is closely related to the choice of the regularization 
parameter a. In [2], for large classes of functions, evaluations are given of the 
difference between f and its approximation f, in dependence on a and on 
the error of the Fourier coefficients. These evaluations, by a standard method, 
suggest a choice of a "good" value of v. It is of interest to verify if this 
theoretical suggestion leads to a good choice of a for the functions generally 
arising in applications. 

In this paper we give the results of a statistical check on the proposed value 
of a in the case of pointwise approximation. In ?2 we briefly recall the regu- 
larization method and the results on pointwise approximation. In ? 3 we state 
the formulas which give the values of the constants involved in the estimation 
of a. A careful evaluation of these constants is very important because (as we 
said) the efficiency of the method depends heavily on the choice of a. In ?4 we 
illustrate the procedure of our statistical check; in ? 5 we give, and comment on, 
some tables of the results obtained, and in ?6 we briefly describe the algorithms 
and the program. 
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2. THE REGULARIZATION METHOD 

We denote by TN I[ -, )N the N-dimensional torus and by ZN the 
lattice of integer points of RN. Let f c LI(TN) and f = {fn}fEZN E loo(ZN) 
be the sequence of its Fourier coefficients. Let P: RN -*I R be a homogeneous 
polynomial of even degree k > 0 such that P(x) > 0 if x $& 0 and, for every 
A= {J}fnEZN C loo(ZN) and a > 0, set (formally) 

(2.1) Ri E i +P(n) e TN. 
nEZN 

If k > N, the right-hand side of (2.1) defines a continuous function of t. 
Consider now a point t where f satisfies the condition 

(2.2) If(x)-f(t)ldx<KrN+a Vr, O<r< Vr 
Jx-tj<r 

(f is the periodic continuation of f in RN), for some K, 0 < K < +o0, 
and a, 0 < a < 1. At such a point, if k > N, the following result holds [2, 
Theorem 6]: For every a > 0 and a, 0 < a < 1, we have 

(2.3) If(t) -Ru4(t)I < KcaNNa/k +al, NU k,(5 

where a = A- llo and the constants Ca, N and al, N depend only on P . 
Let us now set 

do = Ifo-'oL, 15 = suP{lfn-)An: n ZN , n $0 O}. 

An examination of the proof of (2.3) shows that the following more general 
result holds: 

If (2.2) is satisfied and k > N, then for every a0 > 0 there exist aN and 
Ca, N = Ca, N(UO) such that 

(2.4) If(t) - Ru4(t)I < K , NUk + aNJ N1k(51 + (50 

for every bI, 50 > O and for every a, 0 < a < a0. 
By the minimum principle of majorant estimates applied to (2.4) (see, e.g., 

[7, pp. 18-19]) we obtain that, if 

IQ5 - ( NEA k/(a+N) 
(2.5) = =(N 

then 

(2.6) If(t) - RuA(t)I < (I +-) (-KZN N/ N (aN(5,l)a/(+N) + (5o. 

The aim of the paper is to examine whether a is a good choice of a for some 
typical test functions. 

3. EVALUATION OF a1 AND C1, 1 

We consider the case a = 1 (the usual case), N = 1 , and we assume P(x) = 
X4 (so that k = 4). In this case, (2.5) and (2.6) become 
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(3.1) 
a(;<:, 

2 , 

(3.2) jf(t) - Ra A(t)I < 2(KZ I , I 1 b1 )112 + go. 

The procedure of evaluating -a and l, I starts as in [2, Theorems 4 and 5], 
respectively. Obviously, 

If(t) - RaA(t)I < jf(t) - Raf(t)I + IRcT(f- 

We have 

00 00 
aR(f- R )(t)I < 50 + A - An 'e27int < f? + 2MI Z(l + an4)-. 

-oo n=l 
n#10 

Since 
00 1 +?? dx f+00 dy _ 

f 
S: I +an4 10 1+ ax4 1/I 1 +y4 2- 

n-l 

we obtain 
d, < t= 2.2214414 .... 

Consider now the function G: R -- 1R, 

G(x) = re-< ixI sin ( + V2rlxl) 

whose Fourier transform is G(x) = (1 + x4>' [3, p. 9, formula (19)]. If we 
set 

Goa(X) = a- 1/4G(a- 1 x) 

the series Zn100 G,(x + n) defines a periodic function K, c L1 (T) whose 
Fourier series is [9, p. 260, Theorem 3.8] 

00 

K17 (t) = E + 4 e27int. 
n=-oo 

This allows us to evaluate If(t) - Rf(t) j. We can always assume t = 0 . Since 
ITKa (x) dx = 1, we have 

f(O) = If(O)K(x) dx. 

Since 

Raf(O) = K * f(O) = JKci(x)f(-x) dx, 

we obtain 

Rf(O) - f(O) = j(f(-x) - f(O))Ka(x) dx 

00 

= f j(f(-x) - f(O))G,(x + n) dx. 
n= _00 T 

For the sake of simplicity, we set 

If(x) - P(O)I = Af(x), 21/2r-1"4 - C. 
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Then 
00 

=RZef(c) - f()fI < (-4 E AxIf( x)e-+fx+el dx 

(3.3) n=1oo 

00 ~ ~ ~ ~ ~~0 

= Z { -1+ 4 E In} 
n=-oo 

We have 
00 1/2 

(In 3 1 (-X)<(e-c(x+n) xe-c-x+n)) dx 
n:10 n1 -1/2 

00 
-cn~~ -1/212 

(3.4) j {ef(x +2 Af(-x)e-clxl dx + 1 Af(-x)eclxl dx 

= e-cnJ A+ I*fd 
n=l 

From (2.2) we obtain 

1/2 
(3.5) (3 < e() ( af(x)odx < K2i e>0 

1l/2 

Moreover, 

1l/2 
Io = f) ? f(-x) + Afe(x)ce'I dx 

X2 ? +/2 -1 /x 
= e-Cto X Af(t) dt + c J 4 Af(t) dte-cx dx 

-X o o x 

1/2 
< Ke-c12 ( 2-2 + KC J X2e-CX dx 

=/2K (4 hl-c.2 In c i )2 a 

Since e-x(x + 1) < I for all x > O. we have 

(3.6) Io < 2K Va > ?. 

From (3.3), (3.4), (3.5), (3.6) we obtain for every a > O 
/00 00 \ 

5af(?) -f (O) I < tE e-nI+ E e-cn )f- 
n=O n=l 

< 1 2- + 4 e } 

I - exp(-21/27ta-1l/4) {7 +4 -l ep2 /7r /4} 

Since the function ?(y) = y2 exp(-2-1/27ty) attains its maximum at y 

23/2/7r , (2.4) holds. In particular, if O < UO < 7r4/26, we can assume 
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~i~i =~i~i~cro)=I {i 7 -1/2 e(21/27r -1/4) 
1 - exp(-21/27t -1/4) 7 + 4 Io exp(-2- 70 

If 0o= 0.25, we have 

cl, i (0.25) < (1 -e2)l (-+e 2 ) a 0.3869. 

4. THE STATISTICAL CHECK 

A test is now described which has the aim of examining whether the value a 
of a given by (3.1) is in every case a better choice than a = 0 and in general 
is a good choice for the regularization parameter. We are also interested in 
verifying that a is a good starting point for an iterative process which allows 
us to obtain a very good value of a quickly for the particular pairs (f, t) 
considered. 

The statistical check involves the following test functions: 

f1 (t) = sgn t, f2(t) = t, f3 (t) = t2 

f4(t) = t3, f5(t) = et, f6(t) = (1 - 4t2)-1/2 

For these functions we know the values of K = K(t) for every t c T (see [6]). 
In our test we consider the values K = 0.45, 1, 4, 22 because these values 

are assumed by K(t; fj) for several functions fj (j = 1, ... , 6) and t c T. 
Moreover, these points are in different positions with respect to the "critical 
set" of fj (i.e., the set of points where fj or its derivatives are discontinuous). 

We always take JO = 0 (i.e., AO = fo). For n > 0 we take A-n = An (since 
the test functions are real-valued) and An = fn + Cinv, where il is a proper 
constant and {vn4 is a pseudorandom sequence with normal distribution, zero 
mean, and unit variance. 

We approximate the test functions by the Fourier polynomials of Rat, 
m 

An 2rint 
Pm,j Z 

I+uyn4e 
n=-m 

This truncation of RA is equivalent to a further perturbation of the data 
(An = 0 if Inj > m). 

In our experiments we set m = 20 or m = 50. Since for all our test functions 
the modulus of the coefficients fin $ 0 decreases with n I for sufficiently large 
n , the error eI on f due to truncation (in lP) is cl = fm+i and, if we set 
62 = max{|In - fl: 0 < n < m}, we have 

J = J=max(cI, 82). 

For every pseudorandom sequence {jvn considered, and for every fj and m, 
we choose il in order to have J = 0.025. 

Conjecturing (as one always does in the experiments) the values of the pa- 
rameter a involved in our check to be smaller than 0.25, we assume cl 1 = 

T,, 1(0.25) and we calculate a (defined in (3.1)) and the right-hand side 
M(K, 5) of (3.2). For every pair (fj, t), by using the routine described in 
?6, we calculate the value v* = v*() nearest to a which minimizes A, = 

Ifj (t) - Pm, ?(t) I and 

/F = If1(t) - PmF(t),1 IA* = f(t) - Pma*(t)I, I AO = If1(t) - Pmo(t)l. 
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We iterate the process with the same value 3 = 0.025 for 100_different se- 
quences {v, }. Then we calculate the mean values j*, A?,Ai, Aq*, AO, and their 
variances. Subsequently, we choose other values of 3 and we perform for these 
3 the same operations of the case 3 = 0.025. We proceed as described for the 
values K = 0.45, 1, 4, 22. 

5. TABLE AND COMMENTS 

For the sake of brevity, we confine ourselves to presenting some global results 
for the case K = 4 and m = 50. The other results obtained are similar and are 
available from the second author (L.G.). Obviously, also for K = 4, we cannot 
present tables which for every choice of the data f, t, 3 contain the values 

K = 4 

f t || Aa | Ao 

1 1.2E- 1 2.5E-2 1.3E- 3 7.3E-3 5.3E-2 3.1E-3 8.1E-2 

3.7E-2 2.9E-3 l.lE-2 6.9E-2 2.7E-3 1.2E- 1 

1.2E-2 3.2E-4 2.7E-4 1.5E-2 3.7E-3 4.3E-2 

1.3E- 1 2.5E-2 1.3E-3 7.6E-3 4.8E-2 2.8E-3 8.4E-2 

3.7E-2 2.9E-3 1.5E-2 6.8E-2 2.4E-3 1.2E- 1 

1.2E-2 3.2E-4 3.9E-4 1.3E-2 3.5E-3 4.1E-2 

1.7E- 1 2.5E-2 1.3E- 3 1.3E- 3 2.6E-2 l.OE-2 9.3E-2 

3.7E-2 2.9E-3 2.1E-3 4.2E-2 1.5E-2 1.2E- 1 

1.2E-2 3.2E-4 5.8E-4 1.3E-2 3.5E-3 3.2E-2 

2.5E- 1 2.5E-2 1.3E-3 3.3E-3 2.3E-2 5.8E-3 9.2E-2 

3.7E-2 2.9E-3 3.7E-3 3.4E-2 l.lE-2 1.3E- 1 

1.2E-2 3.2E-4 1.3E-3 1.4E-2 4.7E-3 4.1E-2 

4 4.7E- 1 2.5E-2 1.3E-3 1.9E-3 5.4E-2 1.3E-2 7.7E-2 

2.3E- 3 liE- 5 3.5E- 5 8.8E- 3 2.OE-4 l.lE-2 

7.8E-4 1.2E-6 6.2E-7 3.2E-3 1.9E-3 7.9E-3 

5 -4.4E- 1 2.5E-2 1.3E-3 6.9E-4 3.9E-2 3.3E-3 l.OE- 1 

9.8E-3 2.OE-4 4.3E-4 3.1E-2 9.9E-4 3.6E-2 

3.2E-3 2.2E-5 7.7E-6 1.4E-2 2.4E-3 1.3E-2 

4.3E- 1 2.5E-2 1.3E-3 1.2E-3 2.8E-2 5.OE-3 9.9E-2 

9.7E-3 2.OE-4 6.9E-4 3.4E-2 1.5E-3 3.9E-2 

3.2E-3 2.2E-5 1.5E-5 6.9E-3 2.4E-3 1.2E-2 

6 2.1E- 1 7.OE-2 l.OE-2 4.2E-2 4.6E-2 8.1E-4 l.E- 1 

2.1E- 1 9.1E-2 6.4E-2 7.2E-2 2.1E-2 6.1E- 1 

7.OE-2 l.OE-2 4.6E-2 6.7E-2 4.6E-3 2.4E- 1 
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a*, Ai, A,-* , and A0 of all the hundred performed experiments; we therefore 
present only their means. On the other hand, the variances are very small; so 
our choice is a posteriori justified. 

First of all, let us compare Ai and A0 . In general, for every K we have 

(5.1) </2o 
with the exception of K = 22 for some values of t; a careful examination of 
the results shows that this anomaly is essentially due to the fact that the points 
t considered are close to the "critical set" of fj (see ?4), and v* is close to 
zero. We remark, however, that also when K = 22, (5.1) holds for every t if 
8 is sufficiently small. Finally, we note that in all the experiments with noisy 
data we have 

AO* < Ao. 

The result of our check is the following. The choice of (x does not seem 
to be satisfactory in order to obtain a severe reduction of A, with respect to 
A0; nevertheless, (5.1) holds when t is sufficiently far from the critical set. 
Moreover, the results show that a is a good estimate of the order of magnitude 
of a*. This reveals that A, is generally very sensitive to small variations of a 
and shows that cr is a good starting value for an iterative process converging to 
a very good value of a, that is, a* . 

6. ALGORITHMS AND PROGRAM 

In order to carry out the computations described above, we implemented a 
code in FORTRAN 77 using structured programming techniques. It carries out 
the following tasks: 

(1) it reads input data; 
(2) it computes the Fourier coefficients; 
(3) it executes the following loop as many times as needed (each time with a 

different random deviate): 
(a) generate a set of random numbers with a normal distribution (with zero 

mean and unit variance); 
(b) determine the random number with the greatest absolute value; 
(c) compute the noisy Fourier coefficients using the generated random num- 

bers vn multiplied by a = e2/max(IvlI, n = 1, ..., i), where 82 

depends on 8 as explained in ?4; 
(d) find the best smoothing coefficient (called v*) by means of the mini- 

mization of A,; 
(e) compute and print the following values: 8, 1I, c2, (T, M(k, 8), *, 

vary a* , varAie, 1,. , varA,* , Ao, varA0. 

Let us explain some of these tasks in more details: 
(2) The Fourier coefficients of the functions f (i = 1, ... , 5) are provided 

by the formulas given in [4]; the integrals involved in the evaluation of the 
Fourier coefficients of function f6 are computed as described in [4]. 

(3a) The kernel of the random number generator is the function RAN2 from 
[8] that returns a uniform random deviate between 0 and 1, with any negative 
number as a seed of the sequence; from two different uniform deviates on 
(0, 1) we obtained a normally distributed deviate v, with zero mean and unit 
variance using the Box-Muller transformation. 
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(3b) In order to sort an array of length N in ascending order, we used the 
Heapsort Algorithm as implemented in the subroutine SORT from [8]; it is an 
(N log2 N)-order process, not only on average, but also for the worst-case input 
data. 

(3d) The minimization process is carried out by Brent's method as imple- 
mented in the subroutine BRENT from [8]; starting from two distinct initial 
points, it performs an unconstrained minimization using parabolic interpolation 
and returns the minimum function value with an assigned precision. Comput- 
ing v* is in reality a constrained minimization problem subject to a > 0; we 
overcome this difficulty by introducing a new variable a = ?p2 and comput- 
ing the unconstrained minimum of A 2 = If(t) - Pm 2(t) with initial points 
(01=0.0; IP2= 1.2g. 

Our computations were carried out on a Micro-VAX II computer, with a 
memory requirement of about eight Kbyte. 
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